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Abstract – Understanding the dynamics of bowed-string attacks involves exploring the relationship between
bow acceleration, bow force, and the generation of Helmholtz motion during transients. This study addresses
the following research question: How do theoretical limits of “playability” predict these parameters? Motivated
by the need for experimental evidence in this domain, we present a comprehensive investigation into bowed-
string transients within the bow acceleration and bow force parameter space, known as the Guettler diagram.
This study exclusively employs an experimental methodology. The setup, employing a robotic arm, permits the
collection of transient data under varying bowing conditions. Analysis of the bridge force waveform allows for
the extraction of pre-Helmholtz transient times. Our results reveal a triangular playable region in the Guettler
diagram, consistent with theoretical predictions and previous experimental findings. However, Guettler’s
analytical limits for playable regions during transients show limitations. We investigate the role of friction, a
key parameter idealized in the model used for obtaining these limits. Measured friction coefficients from
transients reveal discrepancies with prior experimental studies, highlighting the need for further investigations
in this direction.

Keywords: Music acoustics, Bowed string, Playability, Transients

1 Introduction

Bowed-string instrument musicians dedicate extensive
practice time to refine their bowing technique in order to
achieve the desired outcome. The players control the sound
via three main parameters: bow velocity vb, bow force Fb,
and bow-bridge distance xb. This work utilises the relative
bow-bridge distance, denoted by b, which is defined as
the ratio of the bow position xb to the scale length of the
string L.

There are certain limits in these parameters that must
not be exceeded in a specific musical situation. Generally
speaking, there are two situations in which the musicians
might exceed the limits of “playability”:

� when the bow force Fb they impress on the string is so
small that the string’s fundamental vibration fails,
and we have a faint sound of the bow slipping on
the string;

� when the bow force Fb is so large that the wave on the
string is unable to trigger a clean repetition of periodic
pulses with one stick and one slip per period and one
single corner traveling along the string, i.e. Helmholtz
motion, and we end up with a raucous sound.

Schelleng [1] examined the conditions required to
maintain Helmholtz motion during steady-state and
derived limits for the amount of force that a player may
use before Helmholtz motion breaks down or an- other
higher type of vibration takes place [2].

Further studies [3–8], consisting of both numerical
simulations and experimental investigations, have been
undertaken in recent decades to validate the limits proposed
by Schelleng. These works have led to significant improve-
ments, refining our understanding of the theoretical condi-
tions necessary for sustaining Helmholtz motion. Notably,
Woodhouse [9] has proposed a modified version of the
minimum bow force that takes into account the instrument
body resonances and torsional impedance of the string,
which was compared to numerical simulations [10].

1.1 Playability in bowed attacks

A distinct aspect of bowed-string playability refers to
the transient duration during attacks. While the Schelleng
limits primarily address the maintenance of Helmholtz
motion for sustained notes, playability during attacks is
defined as the condition for achieving a “perfect” attack,
that is, when the Helmholtz motion starts immediately
after the initial string’s slip [11]. Psychoacoustic studies
[12] have demonstrated the perceptibility of short transient*Corresponding author: lampis@mdw.ac.at
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time before Helmholtz motion is developed, even of dura-
tions lasting hundredths of a second. These empirical find-
ings suggest that transient durations within the range of
50–90 ms are generally perceived as musically acceptable
by performers and listeners alike.

The exploration of string transients started with
Raman’s work [2]. Early work by Woodhouse [9] provided
insight into the role of transients in determining playability.
Later research by Schumacher and Woodhouse [13]
revealed distinctions between sets of bow parameters in
the creation of rapid transients. These systematic investiga-
tions used simulations to explore pre-Helmholtz transient
durations, varying bow speed and force during the attack
until reaching asymptotic values [13, 14]. However, their
use of “switch-on” transients – artificial string excitations
with non-zero bow force and speed at the onset – deviated
from realistic musician-initiated bowing gestures.

An alternative method to “switch-on” transients was
proposed by Guettler [11] who explored the use of bow force
Fb and bow acceleration a as parameters for characterising
transients in bowed strings: constant bow force at the
attack start, with bow velocity gradually increasing from
zero (constant acceleration a). Guettler’s main observation
was the correlation between the required bow force Fb and
acceleration a for inducing “perfect” attacks when bowing at
a fixed position along the string b. In particular, these
parameters demonstrated a nearly proportional relation-
ship. Nowadays, the prevailing method for illustrating the
playability during bowed attacks involves plotting the
transient time within a two-dimensional space defined by
bow force Fb and bow acceleration a, commonly referred
to as the Guettler diagram (see, e.g., Figs. 1 and 6).

1.1.1 Guettler’s theoretical limits

Guettler derived analytical expressions formulating the
constraints on bow force and bow acceleration necessary
for achieving “perfect” attacks. His analysis led to upper
and lower bounds of playability within the Fb � a space.
These bounds were derived from Guettler’s examination
of the friction force profile immediately following the first
slip. The first slip refers to the relative motion that occurs
between the string and the bow after the maximum friction
force at the beginning of the attack is reached. For a com-
prehensive explanation of this analysis, refer to Guettler
[11]. Here, we briefly outline the theoretical limits, main-
taining the same nomenclature as in the original paper.

Assuming a simplified model of a perfectly elastic string
(without stiffness), Guettler derived two conditions for the
acceleration a constituting the upper and lower limits, rep-
resented as two inequalities. Referring to two waves sent
from the bow contact point towards the nut and the bridge
as “wave 1” and “wave 2,” respectively, the first condition
(condition A) requires that the bow should apply sufficient
force against the string to generate a rising friction force
before the first slip occurs, thereby preventing premature
slipping before wave 1 reaches the bow from the nut. This
condition translates into an upper limit for the bow
acceleration:

A : a � b 1� bð ÞF b 3� 4bð Þls � ld�½
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2bð Þð2 1� bð Þl2

s � lsldÞ
�q
=½ð1� 2bÞTZ�

ð1Þ
where ls is the static coefficient of friction, ld the dynamic
coefficient of friction, T the string tension, and Z the
string transversal impedance. The second condition (con-
dition B) requires that the bow should apply an enough
small force against the string to allow wave 2 to pass
through the bowing point upon arrival from the nut,
establishing a lower bound for the bow acceleration.

B : a > b 1� bð ÞF b

3ls � ld � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2

s � lsld

q
TZ

: ð2Þ

Two additional conditions are necessary for sustaining
Helmholtz motion. Guettler identified two instances in the
time evolution of the friction force where Helmholtz motion
could break down. Condition C requires that the wave 1
does not cancel out wave 2, after wave 1 catches up with
wave 2 after 1/b periods. This yields a second lower limit:

C : a > b2 1� bð ÞF b½ 1� 1:5bð ÞðC þ k1=bÞðls � ld1Þ

þbls �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 3b2� �

C þ k1=b
� �

ls � ld1ð Þ þ b2l2
s

r
�

=½2 1� 1:5bð Þ2TZ�:
ð3Þ

Here, k represents the reflection coefficient at the nut, ld1
denotes the sliding coefficient of friction during the first slip,
ld2 the sliding coefficient of friction at the Helmholtz
breakdown, and C = (ls � ld2)/(ls � ld1). Moreover,
Guettler’s analysis points that the friction force occasionally
reaches a substantial value after approximately i(1 – b)T0

time, with T0 denoting the nominal period of oscillation

Figure 1. Two Guettler diagrams illustrating the theoretical
limits for achieving “perfect” attacks. The solid lines represent
the boundaries (conditions A–D) formulated by Guettler [11].
The bow acceleration should be maintained lower than both A
and D, and higher than B and C. The influence of b is evident
when comparing the two plots. For a smaller b (closer to the
bridge), conditions B and D define the more stringent limitations
for bow parameters. Conversely, for a larger b (further away
from the bridge), conditions C and A become the more
restrictive boundaries. The exact point at which these roles
switch depends on the specific ratio between the dynamic and
static friction coefficients.
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and i a coefficient ranging from 2 to 8 for 1/6 > b > 1/24.
The condition D requires that the bow must apply sufficient
force against the string to prevent this increased friction
force from inducing prematurely slipping. This results in a
second upper limit for the bow force:

D : a <
F bls

TZ
b 1� bð Þ 1� bþ 2i� 3biþ ld

ls
1� b� 2iþ bið Þ

�

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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½ 1� b� bið Þ 1� b� 2iþ bið Þ2�: ð3Þ
Here, the determination of i is somewhat empirical.
Guettler observed Helmholtz breakdown when i = 1/(3b),
see equation (12) in [11], although subsequent numerical
studies suggested premature slip triggering at lower i [15].

The region within the F � a plane satisfying these
conditions forms a triangular wedge pointing towards the
origin. This wedge arises from the intersection of conditions
A and B, ensuring the initiation of Helmholtz motion from
the first slip, and conditions C and D, ensuring its suste-
nance (see Fig. 1). In other words, for a given force, the
acceleration must exceed both B and C while remaining
below both A and D. When plotted for larger bow-bridge
distances, the wedge widens and tilts clockwise.

It is important to note that these expressions are based
on a series of assumptions regarding bow-string interaction
and string dynamics. Namely, single-point bow-string con-
tact, rigid bow hair, and rigid string terminations with
small losses are assumed, while string torsion, dispersion,
and the effect of temperature on rosin are neglected. Addi-
tionally, the requirement for the bowing point 1/b to be an
integer is imposed.

Guettler’s numerical simulations, incorporating these
assumptions, align reasonablywell with the analytical limits.
By systematically varying bow force and bow acceleration in
time-domain simulations and plotting transient time for
each parameter set, Guettler constructed a playability
map in the parameter space Fb � a to visualise the playable
region and compare it with analytical limits [11]. Subsequent
comparisons also showed similar agreements using a non-
stiff string model in simulations [15]. Condition C was found
to have negligible impact on numerical simulations by
Guettler, except for the largest b, a finding confirmed in
[15]. Although these conditions themselves may not directly
apply to more realistic systems, they offer insight into the
conditions necessary for Helmholtz motion development.

1.2 Previous measurements of Guettler diagrams

The only Guettler diagram derived from experimental
data is attributed to Galluzzo [5]. Employing a bowing
apparatus, his work revealed that within the Fb � a space,
a triangular region consisting of playable transients
(Helmholtz motion within a 20-period duration) emerges.

Furthermore, he observed a “speckled” pattern of tran-
sients, similar to those recognised in numerical simulations

utilising complex models [16]. This pattern appears as a
location of “perfect” attacks and failed transients within
the playable region next to each other, with variability
apparent across measurements. Exhaustive testing with a
bowing machine demonstrated a degree of repeatability in
results, but limited by the chaotic nature of transients.
Consequently, it was inferred that achieving “perfect” tran-
sients under identical nominal conditions, particularly near
the limits of the wedge, is improbable.

Nevertheless, a proportional relationship between the
upper and lower limits of bow force and the force itself
was observed, despite the “blurred” borders of the triangle
region. To delineate a more reliable region, measurements
were repeated 12 times, identifying areas leading to rapidly
established Helmholtz motion. Further insights from his
work are reported in detail in [5].

1.3 Aim of the study

The primary goal of the present study is to experimen-
tally investigate the limits of bow force Fb and bow acceler-
ation a within the Guettler diagram.

This research explores the playability constraints during
bowed-string attacks, employing experimental data and
comparing the findings with existing literature. The central
question motivating this study revolves around the use of
friction coefficients, extracted from the transient waveform
of the bridge force, as a modifying factor for the analytical
expressions originally proposed by Guettler. Recognising
that Guettler’s limits are overly idealised to align with
experimental results, they nonetheless serve as the only
analytical framework for predicting regions leading to
“perfect” Helmholtz motion attacks. Thus, it is important
to determine whether these theoretical limits may be
informed by experimental observations.

The only work [5] incorporating experimental data to
construct a Guettler diagram revealed intriguing aspects
of transient time behaviour not previously observed in
numerical studies [16]. These observations were done by
repeated measurements, parameter space scanning in
reverse order, and varying the bow position along the
string. These approaches were replicated in the current
study. Differently from Galluzzo’s setup, which utilised a
D-string mounted on a cello for data acquisition, our exper-
iments employed a G-string mounted on rigid terminations
in a monochord configuration to mitigate vibrational influ-
ences from the instrument’s resonance modes. Previous
investigations encompassed a comparison of results
obtained using a perspex rod as an exciter and an actual
bow, yielding similar results. Consequently, we opted to
limit string excitation to an actual bow.

2 Method

The experimental data for constructing the Guettler
diagrams were collected with an apparatus consisting of a
single cello string mounted on rigid terminations, and a
robotic arm (UR5e by Universal Robots) for string excita-
tion, both installed on a heavy optical table. The two rigid
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terminations are referred to as the “bridge” and the “nut”.
On the bridge, the string is supported by a sensor capturing
the string force on the transversal plane. Such a bridge
sensor measures the static and dynamic force, since it is con-
stituted by load cells [17]. On the flange of the robotic arm,
a self-made end-effector is installed. This serves for measur-
ing the bow force and holding the bow. A thorough expla-
nation of the whole apparatus is provided in a technical
report [18].

Signals are acquired through a data acquisition card
connected to a PC. For this study, the nut, and bridge force
signals, the string tension, the bow force, and the robot
coordinates are simultaneously recorded at a 50 kHz sam-
pling rate. The experimental setup is situated at the labora-
tory of the Department of Music Acoustics (IWK) of the
University of Music and Performing Arts Vienna. A photo
of the main components of the setup is provided in Figure 2.

2.1 String excitation

For each bow stroke, acceleration and bow force change
by changing the robot’s motion settings, and are recorded
along with the string force at the bridge. The robot coordi-
nates and force signals are processed to extract the string
excitation conditions that appear as coordinates in the
Guettler diagram.

It was noted that tensioning the bow hair above the typ-
ical playing conditions resulted in a more stable force,
specifically in the area around the middle of the bow. For
this reason, it was found to be sufficient to over-tension
the bow hair to ensure an almost constant bow force along
the desired bow journey. In this way, no automatic force
control, as the ones present in other bowing machines [19,
20], was required. It was sufficient to keep the bowing area
to a length of 6 cm in the middle of the bow hair. Oscilla-
tions of the bow force were carefully tracked and reported
in Section 2.2. For this study, a student bow (Artino Cello
Bow 4/4 Special Edition) in which the stick is made of fibre-
glass was used. The rosin employed was a J100M Jade
L’Opera, suitable for violin, viola, and cello.

We controlled the kinematics of the bow movements,
such as its position, velocity, and acceleration, using the
robotic arm. A program was designed in the commercial
software of the robotic arm (PolyScope) in order to perform
strokes with controlled parameters. Moreover, the program
interfaces the robot with the recording software [21], in
order to trigger recordings starts and stops, while sending
the robot coordinates to be recorded.

To scan the Fb � a space, the robot performs a series of
commands that result in the following bow movements: the
bow hair is pushed against the string, then the bow is
moved perpendicularly to the string, in a linear trajectory
and with constant acceleration until a distance of 6 cm,
after which the bow decelerates. The robot then moves
the bow to the starting position, and the program instructs
to increase the acceleration of the stroke by 0.1 ms�2. When
the acceleration reaches the final value of 3.15 ms�2, the
robot changes its vertical coordinate, going down by a step
of 0.2 mm thus increasing the force with which the bow

hair are pushing against the string. This results in a slight
increase of the bow force. When the measurements are done
in reverse order, the starting point corresponds to the
maximum force and maximum acceleration, then at each
cycle the acceleration decreases with the same step.

In practice, the bow force was not directly controlled.
The elevation of the bow with respect to the string results
in having different bow forces. The goal was to span a wide
range of bow forces, so the choice of bow elevations would
cover a span of about 1–3 N.

The bow speed is retrieved from the coordinates of the
robot’s tool flange position. From the velocity profile, the
acceleration is computed from its slope. An example of
the bow velocity profile (and the relative acceleration)
and the bow force is shown in Figure 3.

A commercially available cello G-string fromThomastik-
Infeld (Dominant, medium gauge) was used for these exper-
iments. The string has a synthetic core and chrome winding.
Detailed information on the string’s properties is presented
in Table 1.

The string tension T was directly measured using a ded-
icated load cell. The fundamental frequency f0, the bending
stiffness B and the quality factor Q were derived from the
string’s pluck response, employing the wire breaking
method. The plucking was repeated three times, and the
mean values and standard deviation is reported in Table 1
and Figure 4.

It is important to note that the string properties
reported in Table 1 and Figure 4 were measured after the
first measurement session (see Sect. 3.1). This involved
mounting the string and allowing it to adapt to the tuning
tension for several days before collecting the data. As
observed in Table 1, the measured fundamental frequency
(97.8 Hz) deviates slightly from the expected G note
(98 Hz). This discrepancy can be attributed to the detuning
of the string after multiple bowings during the measure-
ment session.

By analysing the inharmonicity of the string natural
frequencies across transverse modes, it is possible to deter-
mine B [22]. The theoretical quadratic relationship between

Figure 2. Photo of the experimental setup. A robotic arm (left)
holds a bow exciting a cello string (centre). The two string
terminations, the “bridge” (closer to the robot) and the “nut”
(further away), are visible. The entire setup is mounted on an
optical table for stability and vibration isolation.

A. Lampis et al.: Acta Acustica 2024, 8, 444



the natural frequency normalized by the mode number fn/n
and the mode number n is expressed as fn/n� a+ cn2, with
B � (2cTL2)/(ap2) [23]. The best fit to the measured
normalised frequencies permits to estimate B, and it is rep-
resented by the dashed line in Figure 4a.

The damping characteristics of the first 30 modes were
measured alongside the inharmonicity. The Q factor is cal-
culated for each mode as the ratio between the natural fre-
quency and the bandwith of the �3 dB drop of the power
spectra around the natural frequency. The results are pre-
sented in Figure 4b, with the dashed line representing the
best fit of the Valette model for frequency-dependent damp-
ing [24]. For both plots in Figure 4b, the missing data points
correspond to modes that were not efficiently excited due to
the plucking position (same b referred in Sect. 3.1). Error
bars indicate the standard deviation of the measurements
for three plucks.

2.2 Performance of the apparatus and experimental
conditions

We evaluated several factors influencing the system’s
performance to ensure experimental robustness and
repeatability. These factors include variation in string prop-
erties, bow force and acceleration fluctuations during
attacks, and environmental conditions throughout the
experiments. The string properties were assessed by mea-
suring variations between different experimental sessions.

The bow force during the attack exhibits slight oscilla-
tions, as illustrated in Figure 3. However, the magnitude
of these variations is minimal and comparable to previous
studies [19]. The standard deviation of the force profile for
each attack quantifies these oscillations (see dotted line in
Figure 3). The maximum standard deviation across all

recordings was 0.0667 N, with an average deviation of
0.05 N. Notably, this deviation tends to increase with
higher force and acceleration values.

Measurements of bow acceleration deviated slightly
from the nominal values programmed in the robotic arm
software, particularly above 2 ms�2. This could be attribu-
ted to limitations of the robotic arm at high velocities or the
method of extracting velocity from position data. Typical
values for the deviation were 0.01 ms�2 for accelerations
up to 2 ms�2 and 0.1 ms�2 for accelerations up to
3.15 ms�2.

String tension naturally decreases with playing time. In
our experiments, the string was tuned at the beginning of
each session, and tension changes were monitored through-
out. Typically, the string loss in tension was by 0.7 N, with
a maximum observed of 1.45 N.

Environmental conditions were monitored throughout
the experiments by continuously recording temperature
and humidity. The average temperature during the mea-
surements presented in this paper was 22 �C. However,
some temperature fluctuations of about 1 �C were observed
within each measurement session used to generate a single
Guettler diagram. Humidity fluctuations were generally
minimal during measurement sessions.

2.3 Detection of transient time

Since distinct vibration regimes of a bowed-string result
in characteristic waveforms of the bridge force signal, these
signals are commonly used to categorize the string’s
vibrational regimes. This work employs an automatic clas-
sification detection algorithm used also for computing tran-
sient time, originally proposed by Woodhouse [25] and
further developed by Galluzzo [5]. The algorithm relies on
detrending the bridge force signal to resemble a step func-
tion. Subsequently, the distances between histogram peaks
of the detrended signal provide an indication of the dura-
tions between consequent stick phases. The interval
between consecutive peaks is compared to the theoretical
“flyback” amplitude of Helmholtz motion. If the difference
is negligible, the specific segment is classified as Helmholtz
motion (see Fig. 5).

Figure 3. An example of bow velocity and bow force measured
signals during an attack. The acceleration a is derived from the
slope of the velocity profile. The bow force used for the Guettler
diagram corresponds to the mean of the bow force signal during
the transient (horizontal line in the bottom plot). The dashed
lines in the bottom plots represent the standard deviation of the
bow force.

Table 1. Measured and derived properties for a Thomastik
Infeld Dominant G cello string mounted on rigid supports.
Values of the tension T and the frequency f0 were measured right
after the first measurement session (Sect. 3.1). Three plucked-
string signals were obtained by wire-breaking method after the
measurement session to measure the bending stiffness B and the
quality factor Q as a function of frequency (see Fig. 4).

Parameter Value Unit Note

Tension T 116.1 N Measured
Scale length L 0.7 m Measured
Diameter d 1.15 mm Measured
Frequency f0 97.86 Hz Measured
Linear density l 6.2 g/m l = T/(2Lf0)

2

Impedance Z 0.849 Kg/s Z ¼ ffiffiffiffiffiffi
lT

p
Bending stiffness B 3.03 ± 0.015 10�4 N m2 Measured
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The pre-Helmholtz transient duration is calculated from
the time of the first slip to the first instance of sustained
Helmholtz motion. To ensure reliable detection of sustained
Helmholtz motion, we required its identification in three
consecutive instances. This method might be more effective
for assessing sustained behaviour in shorter signals, while
longer signals might exhibit extended periods of Helmholtz
motion followed by a breakdown only near the signal’s end.
However, given the limited bow region employed in this
study compared to typical playing conditions, this method
remains appropriate.

A separate algorithm was implemented for first-slip
detection, as the method in [5] can exhibit instabilities at
very low bow velocities, leading to an “exploding” detrended
function. Our alternative approach involved calculating the
derivative of the bridge force signal, which generates pulses
corresponding to the slip phases. By simply identifying the

first pulse, the moment of first slip could be determined.
While this method is less robust for scenarios lacking a clear
first slip (a challenge for most detection algorithms), it
avoids potential issues encountered with the method in [5]
at low velocities.

To facilitate Helmholtz motion detection, signals with a
fundamental frequency exceeding twice the string’s nominal
frequency were labelled as failed transients. However, this
approach was insufficient to eliminate all S-motion regimes,
as these can also exhibit a dominant frequency at the
string’s nominal frequency. Therefore, we computed the
zero-crossing rate (ZCR) within a 0.2 s window following
the first slip, normalised by the nominal vibration period.
Signals with a ZCR > 3 in this time window were labelled
as failed transients.

3 Experimental Guettler diagrams
3.1 Results at one value for b

A Guettler diagram was obtained for the G-string on
the monochord with 30 values of a, 33 values of Fb and
at the relative bowing position of b = 0.0786. The pre-
Helmholtz transient time is plotted as a function of a and
Fb, as shown in Figure 6. The scattered points are coloured
according to the transient time. Black points represent
failed transients, i.e. with a detected time equal to or bigger
than 20 periods, while white points represent “perfect”
attacks with 0 periods duration. Bow strokes with varying
a were performed for each force. For this measurement,
Fb and a were varied in ascending order. The duration of
pre-Helmholtz motion was computed automatically by the
detection algorithm described in Section 2.3. Following
Galluzzo [5], the transient was considered successful if the
duration between the first slip and sustained Helmholtz
motion was less than 20 periods time, corresponding to
0.204 s. In our case, we considered sustained Helmholtz
motion if it was detected for at least three consecutive

Figure 4. (a) The natural frequencies of a Thomastik Infeld
Dominant G cello string normalised by the mode number across
transverse modes. The dashed line represents the best fit of a
theoretical quadratic relationship. (b) The Q factors as a
function of the same modes. The dashed line represents the best
fit of the Valette model for frequency-dependent damping.

Figure 5. An example of the detection algorithm used for
identifying vibration regimes in the bridge force signal and
computing the pre-Helmholtz transient duration. Helmholtz
motions are marked with diamonds “}”, multiple slips with blue
asterisks “*”. The marker on the top “++” serves as a reference
for the duration of the nominal vibration period.
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occurrences at the end of the signal. A manual inspection
was performed for 50 detected waveforms, focusing on the
borders of the playable region, in order to assess the accu-
racy of the detection. Occasionally, motions with multiple
flyback [19] were misidentified as Helmholtz motion, and
labelled as failed transients by the experimenter. Looking
at Figure 6, it can be noted that the data points are not
aligned on a perfect grid, especially for acceleration values
higher than 2 ms�2.

The triangular shape of the playable region is in agree-
ment with Guettler’s predictions [11]. The upper and lower
limits form approximately straight lines. However, differ-
ently from conditions A–D, the borders do not point
towards the origin, as there is a non-playable area below
the bow force of around 1 N. Inside the playable region,
there are occurrences of failed transients, showing similar
speckled patterns as observed in previous experimental data
[5]. There is not a clear area where “perfect” transients are
gathered. The diagrams from both Galluzzo and our study
exhibit the absence of radial lines with seemingly identical
transient time, that are instead present often when using
numerical simulations [16].

While one single Guettler diagram provides insights into
playability limits, further investigation is needed to confirm
the validity of these observations. The next section presents
results from six repeated measurements with varying
measurement order and string conditions. This extended
dataset will shed light on the potential variability or the
chaotic nature of transients.

3.2 Reproducibility of the measurements

To assess the repeatability and robustness of the
observed playable region and transient behaviour, we con-
ducted five additional measurements with varying order
and at one month distance. This aimed at isolating potential

systematic effects arising from changes during the measure-
ment session, such as rosin depletion, string tension varia-
tion, and bow hair tension changes.

The first four repetitions alternated between the original
ascending order and reversed order within a day distance.
This design allowed us to identify any order-dependent
influences on the results. For example, as the rosin is
applied at the beginning of the session, one might argue
that more rosin is available initially. Additionally, string
tension naturally detune after extended playing, and bow
hair tension might also decrease during the measurement.
These factors can potentially influence the playable region
and transient times.

Furthermore, de-tensioning and re-tensioning processes
could potentially influence string properties, which in turn
might affect bow-string interaction. To investigate the
long-term stability and impact of string ageing on playabil-
ity limits, two further repetitions were conducted one
month later after dismounting and remounting the string.

Figure 7 presents the repeated Guettler diagrams. Due
to varying bow force ranges across repetitions, all diagrams
were cropped for consistent comparison while retaining
sufficient data points for analysis. Features like playable
region shape, size, and distribution of “perfect” transients
were analysed for each repetition. Overall, the playable
region size and shape remained consistent across all repeti-
tions, regardless of measurement order or string condition.
Moreover, it is important to note that the 1 N lower force
limit was observed in other repetitions where data below
1 N were available, even though it is not directly visible in
Figure 7 due to cropped force ranges. Interestingly, this
unplayable region at 1 N was also observed in other mea-
surements using different string types, with both ascending
and descending order. These additional data are not
included in this paper.

A minor difference was observed in the last repetition
(right bottom of Fig. 7), where the right side acceleration
limit deviated slightly from an apparent straight line seen
in other plots. It is yet unclear if this behaviour is caused
by a systematic change in system parameters or is due to
random variations.

Figure 8 displays the averaged transient time across rep-
etitions. The data points from each repetition were not iden-
tical, so we used an interpolated grid (100 � 100 points) to
create this averaged representation. For each grid point
within the map, the average transient time was calculated
by taking the mean value across all repetitions. This analysis
identified a “brighter” region in the map, which corresponds
to a zone where the pre-Helmholtz transient time is shorter.
Other than this aspect, the repeated measurements largely
confirm the initial findings from Figure 6, suggesting consis-
tent Guettler limits and transient time distribution within
the playable region (see also Sect. 4).

3.3 Results at different b

Following the results at a fixed string position
(b = 0.0786), we further investigated the influence of b
by making measurements at four distinct positions along

Figure 6. Guettler diagram for a Thomastik Infeld Domainant
G cello string mounted on rigid supports at a relative bow-bridge
distance b= 0.0786. The pre-Helmholtz transient duration is
given by the colour of each point at a certain combination of bow
force Fb and bow acceleration a. White points indicate an
immediate onset of the Helmholtz motion, while black points
indicate failed transients (duration of 20 period lengths or more).
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the string: b = 0.0429, 0.0786, 0.121, and 0.164. These posi-
tions were chosen to minimise the occurrence of S-motions,
known to appear at integer ratios of the string’s playable

length. Notably, the position at b = 0.0786 coincides with
the one used previously, and therefore is used as an addi-
tional repetition.

As expected from the current literature, the playable
region rotates clockwise in the Guettler diagrams with
increasing b (see Fig. 9).

An intriguing observation from Figure 9 is the
significantly higher “brightness” of plots at higher b. This
shows a very limited number of transient times falling
within the 5–20 period range. This suggests that at lower
b, i.e. playing closer to the bridge, phenomena may exist
that disrupt the periodic triggering of slips during the
attack’s initial phase. Furthermore, the boundaries of the
playable regions in the latest plots (b = 0.121 and 0.164)
appear more scattered and deviate from straight lines
compared to b = 0.0786. These observations could also be
partially attributed to the exclusion of S-motion during
the detection phase.

In conclusion, these results compared our experimen-
tally derived Guettler diagrams with previous studies [5]
using similar approaches. While confirming the general
behaviour of Guettler diagrams, we observed minor devia-
tions from the existing literature. The next section will
explore an alternative comparison, utilising the experimen-
tal data to assess the deviation between the theoretical
Guettler limits and the experimentally determined playabil-
ity limits.

Figure 7. Six repetitions of the Guettler diagram. To facilitate visual comparison across plots, the y-axis has been cropped to
accommodate the same force values in each plot. The top-left plot is identical to Figure 6 and serves as a reference. The remaining
plots depict Guettler diagrams acquired by systematically varying bowing parameters in either ascending (top row) or descending
(bottom row) order during the measurement sessions. The left and centre columns show results obtained on consecutive days without
removing the string from the apparatus. The rightmost column displays Guettler diagrams measured after a one-month interval, with
the string having been dismounted and remounted in the meantime.

Figure 8. Average pre-Helmholtz transient time across the six
repetitions shown in Figure 7. To create this visualisation, each
of the six individual Guettler diagrams was first interpolated
onto a common grid with 100 rows and 100 columns. Following
interpolation, the average transient time was calculated for each
grid point by taking the mean value across all repetitions. The
observed “brighter” region represents a zone where the bow-
string interaction generally leads to shorter pre-Helmholtz
transient times.
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4 Comparison with Guettler limits

This section compares the theoretical limits derived
from conditions A–D with the experimentally observed
playable region in the Guettler diagram. It is important
to note that our Guettler diagram includes transients longer
than zero period duration, while the analytical analysis of
Guettler considers “perfect” attacks only. Moreover, devia-
tions from the theoretical limits are expected due to
idealised assumptions.

Figure 10 utilises the Guettler diagram from Section 3.1
as the basis for comparison with the analytically derived
Guettler limits. Specifically, Figure 10a displays the dura-
tion between the first slip and the first occurrence of
detected Helmholtz motion, i.e. two consecutive stick
phases per period, regardless of whether this motion is sus-
tained. In contrast, Figure 10b repeats the same informa-
tion presented in Figure 6 by showing the duration
between the first slip and the first occurrence of sustained
Helmholtz motion. To accommodate the visualisation of
multiple lines overlaid on the same plot in Figures 10a
and 10b different colour scheme is employed compared to
Figure 6. Examining Figures 10a and 10b reveals that some
transients may start with initial parts classified as Helm-
holtz motion (appearing as bright spots in Fig. 10a). How-
ever, this motion might not last throughout the entire

transient. Figure 10b shows most of these same transients
lasting longer, suggesting that Helmholtz motion is not
sustained.

String tension and transverse impedance were obtained
from measured string properties, while the nut reflection
coefficient (k = 0.998) was derived from the measured pluck
response at the nut. Our study employs constant friction
coefficients for simplicity, whereas previous works incorpo-
rated small variations in friction coefficients during simula-
tions to compute conditions A–D [11, 15]. These variations
were observed to be minimal when using the hyperbolic
friction model. In contrast, we did not use any friction
model to inform the limits with friction coefficients. Given
the high sensitivity of the Guettler inequalities to friction
coefficients, two sets of friction coefficients were employed.
The values selected were chosen to resemble those com-
monly employed in literature (for instance, [26]). The result-
ing limits are displayed in Figure 10, with continuous lines
representing conditions obtained using (ls = 1, ld = 0.5,
ld1 = 0.4, ld2 = 0.3) and dotted lines representing those
obtained with (ls = 0.8, ld = 0.3, ld1 = 0.2, ld2 = 0.1).
While these sets of coefficients are similar, noticeable varia-
tions can be observed in conditions A, B, and C.

By only focusing on the transient time after the first
slip, without considering the subsequent maintenance of
Helmholtz motion, we can better assess the string behaviour
described by conditions A and B. These conditions aim to
predict “perfect” attacks after the first slip, not the continu-
ation of Helmholtz motion.

This approach aligns with Demoucron’s observation
that considering only the initial triggering, leads to bet-
ter agreement with simulations of flexible strings [15].
Figure 10a reveals limitations in conditions A and B for
identifying the “perfect” attacks region (0-1 period length)
during the initial triggering phase.

Conversely, conditions C and D are better suited for
describing the region where Helmholtz motion is main-
tained. Therefore, these conditions should be compared to
the Guettler diagram in Figure 6. Condition D additionally
depends on the ratio ld/ls [11]. For example, for ld/ls =
0.5, condition A becomes more restrictive when b > 1/6.
However, in our case with b < 1/6, the maximum acceler-
ation predicted by condition D (as seen in Fig. 10b) proves
more restrictive when i = 1/(3b), as suggested by Guettler.
To align the boundary of condition D with the higher limits
in our experimental diagram, a bigger normalised period
index ib = 0.667, corresponding to i = 1/(1.5b), was empir-
ically found. The resulting line is displayed in Figure 10b
and labelled as D*. Figure 10b builds upon Figure 6 by
overlaying the “perfect” attacks (0-1 period length) onto
the Guettler diagram. This visualisation effectively high-
lights that conditions C and D delineate a clear playable
zone where “perfect” transients are more likely.

This comparison reveals that the Guettler conditions
are not entirely suitable for determining the extent of
the experimental playable region. This highlights the need
for further investigation into how the Guettler limits can
be physically informed. Notably, the only parameters

Figure 9. Guettler diagrams at different string positions b. As
expected, the playable region rotates clockwise with increasing
b. Higher b values exhibit smaller transient times within the 5-20
period range. Compared to b = 0.0786, the latest plots show
more scattered playable region boundaries.
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not directly extracted from the actual string were the fric-
tion coefficients. Static and dynamic friction coefficients
can be estimated from the bridge force and bowing
parameters [5].

4.1 Friction coefficients in the Guettler space

This section describes the approach used to derive
friction coefficients from measured data, which will then
be utilised in the analytical Guettler limits. Instead of rely-
ing on literature values, we employ friction coefficients
extracted from the bridge force signal for each Guettler
diagram point in Figure 6.

The static friction coefficient ls is estimated through
a simple equilibrium analysis of the bridge force. The
assumption is that ls is proportional to the maximum force
just before the initial slip. The bridge force signal is
subjected to an angular transformation to isolate the force
component acting perpendicular to the bowing direction.
Assuming a constant ratio between the bridge force and
perpendicular force throughout the string length (due to
quasi-static forces before the first slip), the ratio at the
bridge is assumed equivalent to the contact point’s force
ratio, yielding the static coefficient. This calculation is per-
formed for each bridge force signal associated with each
Guettler diagram point. The results, shown in Figure 11a
(top plot), differ from Galluzzo’s observations [5, 16]. Our
average ls across all measurements (including repetitions
and varying b) is approximately 1.4, contrasting with
Galluzzo’s average of 0.66. Our ls exhibits strong depen-
dence on bow force but minimal dependence on bow
acceleration. We have also calculated ls using the same
procedure as Galluzzo, dividing the bridge force just before
first slip by (1 � b)Fb [5], to exclude possible influence
from the data analysis. Despite this difference, both
methods yielded practically identical trends and mean
values of ls. To improve the representation of the friction

coefficients l, a second-order polynomial curve is fitted to
the data

l � x0 þ x1aþ x2F b þ x12aF b þ x11a2 þ x22F 2
b: ð5Þ

This quadratic fit, shown in the bottom plots of Figure 11,
performs better than a linear fit (minimising the sum of
squared errors). Outliers are removed based on median
absolute deviation criteria before fitting. The values of the
fitting coefficients are collected in Table 2.

Based on the observation in [5, 27] that the bridge force
jump at the first slip relates to friction coefficient change,
ld1 is computed by subtracting the change in friction
coefficient from ls. The measurements of ld1 and the fitted
curve are displayed in Figure 11b. The trend resembles that
of ls, with the difference between static and dynamic coef-
ficients increasing from 0.6 at lower bow forces to 1 at
higher forces.

Deriving ld2, the friction coefficient at the Helmholtz
motion breakdown point, presents complications. Instead
of precisely tracking the slip, the static and dynamic friction
coefficient at the second slip is measured, similarly to ls and
ld1, respectively. The jump in friction coefficient at this sec-
ond slip is then used to estimate ld2. This approach
acknowledges that the actual friction coefficient at the
breaking pointmight be lower. This is because as the relative
bow-string velocity increases, the dynamic coefficient typi-
cally decreases. Consequently, a significant drop in the
dynamic coefficient may occur during the attack after the
first slip. For deriving ld, an “averaged” dynamic friction
coefficient is employed. This value represents the ratio
between the average bridge force in the bowing plane and
the average bridge force in the perpendicular plane. The
assumption is that the quasi-static component of the bridge
force is proportional to the average friction force at the bow-
ing point. The average window is chosen to be 0.1 s, which
corresponds to a typical development time for Helmholtz
motion. The plots in Figure 11c reveal discrepancies between

Figure 10. Comparison between Guettler theoretical limits and measured transient times in the Guettler diagram from Section 3.1.
In (a) the plot displays the duration between the first slip and the first instance of Helmholtz motion regardless of whether this motion
is sustained. Conditions A and B are overlaid on the plot (solid and dashed lines). Two sets of friction coefficients are used to illustrate
their influence on these conditions. The dotted lines represent the conditions computed with lower friction coefficients compared to the
solid lines. In (b) the transient time is displayed as in Figure 6, but uses a colour scheme optimised for displaying multiple lines. Here,
“perfect” transients (lasting 0-1 period length) are highlighted in red. Notably, these “perfect” transients fall largely within the region
bounded by conditions C and D*.
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this dynamic coefficient and ld1. Interestingly, the average
value of ld is significantly higher than that of ld1, while
the trends remain similar.

4.2 Guettler limits based on measured friction
coefficients

In Section 4.1, we presented the measured friction coef-
ficients and their dependence on both bow force and accel-
eration. While these measurements suggest an influence of
bowing parameters on friction forces during transients
(Fig. 11), a comprehensive theoretical model that captures
this complex behaviour is currently unavailable. Therefore,
in this Section, we directly incorporate the measured
friction coefficients into conditions A–D for simplicity. We
utilize the quadratic relationship (5) obtained by fitting
the measured data to represent this dependence smoothly.
It is important to note that this fitting serves solely as a
visualization tool and does not represent a physical friction
model.

For obtaining a closed-form solution of conditions A–D,
where bow force is the sole independent variable, it is nec-
essary to impose a constant acceleration â, so that we can
express the friction coefficient as lâ ¼ f ðF bÞ. This mathe-
matical simplification of fixing acceleration in the inequali-
ties for conditions A–D allows us to isolate the influence of
bow force on the theoretical limits. In Figure 12, each curve
illustrates the evolution of these limits with increasing bow
force while assuming a constant acceleration value â. This
visualization highlights how the limits change shape based
on the trends observed in the measured friction coefficients

of Figure 11. For comparison, Figure 12 displays additional
dashed lines representing limits computed with a set of fixed
friction coefficients (ls = 1, ld = 0.5, ld1 = 0.4, ld2 = 0.3)
used in Figure 10.

A complex behaviour is exhibited in response to varia-
tions in friction coefficients. At low â, all curves except
condition C tend to be straight lines. Condition C, however,
exhibits curvature towards lower values of Fb. With
increasing â, all limits except C curve to the left. Condition
C exhibits a distinct trend, changing curvature as â
increases.

Looking back at Figure 11, we can visualise that at lower
acceleration, the friction coefficients tend to exhibit higher
variability with respect to bow force. Moreover, this vari-
ability becomes less pronounced at higher acceleration. This,
in turn, affects the behaviour of conditions A–D when
increasing â. In general, at higher â, the average value of
the coefficient of friction decreases, leading to an increase
in the limits. This behaviour is also evident in Figure 10,
where the dashed lines (using lower friction coefficients)
correspond to higher limits compared to the continuous lines
(using higher friction coefficients).

Our observations demonstrate that the friction coeffi-
cients within the Guettler plane vary distinctively, and this
needs to be an important element when predicting the
playable region’s limits within the Guettler diagram. The
curvature observed in the limits does not reflect the typical
wedge-shaped region of the experimentally obtained
Guettler diagrams. However, focusing solely on the shortest
transients in Figure 8, a faint resemblance can be observed
between the curvature in this region and that of conditions

Figure 11. Measured friction coefficients obtained from the bridge force signals. The plots at the top show the measured friction
coefficients, while the ones at the bottom represent the second-order polynomial fits to the measured friction coefficients using
equation (5). (a) Static friction coefficient ls. (b) Dynamic friction coefficient at the first slip ld1. (c) Averaged “dynamic” friction
coefficient ld, computed by taking the ratio of the average bridge force on the bowing plane and the average bridge force on the
perpendicular plane over a 0.1 s time window.
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A, B, and D.While this is insufficient to draw definitive con-
clusions, it presents a potential direction for future research.

5 Discussion and conclusions

This work investigated the pre-Helmholtz transient
behaviour in bowed strings using an experimental
approach. The analysis focused on the playable region
within the Guettler diagram, characterised by successful
string attacks.

The study confirms the existence of a triangular play-
able region in the Guettler diagram, consistent with previ-
ous observations. Notably, the distribution of successful
and unsuccessful transient times within this region appears
scattered, with no clear specific area exhibiting a higher
concentration of “perfect” attacks (zero transient duration).
Interestingly, repeated measurements demonstrated consis-
tent playability limits despite the inherent chaotic nature of
transient times. While the higher resolution employed in
this work compared to prior studies allowed for a more pre-
cise definition of the playable region boundaries, further
research is needed to understand the observed clustering
of “perfect” transients in later repetitions.

The observed proximity of successful and unsuccessful
transient points within the playable region highlights the
inherent complexity of bowed-string attacks. As similarly
reported by Galluzzo [16], the detailed black and white pat-
tern observed within the playable region likely exhibits low
repeatability even under carefully controlled excitation
conditions. However, the overall qualitative features, such
as the position and shape of the playable region and the

statistical nature of successful and unsuccessful transients,
exhibit good repeatability. Therefore, comparisons between
experiments, simulations, and theoretical models should
primarily focus on these qualitative features.

For specific values of the relative bow-bridge distance
(b = 0.121 and 0.164), a significant number of S-motion
occurrences were observed. In order to exclude these
motions from the analysis of the playable region, we incor-
porated transient time information with the oscillation rate,
thereby effectively distinguishing S-motion.

Our findings align with previous numerical and experi-
mental results, demonstrating that the playable wedge
region within the Guettler diagram rotates with increasing
b, and the transient times tend to be shorter within these
rotated regions.

This work highlights the importance of employing fric-
tion coefficients that vary with input parameters such as
bow acceleration and bow force. These findings have impor-
tant implications for future research on bowed-strings. The
long-term goals of this line of study involve further experi-
mental investigations into various aspects of playability,
focusing primarily on the frictional behaviour at the bow-
string contact point. Additionally, comparisons between
experimental data and simulations of bowed-string tran-
sients remain a key objective.

Moreover, the “speckled” nature of the experimental
Guettler diagram fails to capture the capability observed
in experience players, who are able to achieve perfect tran-
sients almost every time. This poses further questions on
the factors influencing transient playability in bowed-string
instruments. In this regard, future investigations should
explore the influence of factors beyond friction coefficients.

Figure 12. Guettler limits computed using friction coefficients obtained from measurements. Conditions A and B are shown in (a),
while conditions C, D, and D* are displayed in (b). Ten increasing values of â were employed, ranging from 0.15 ms�2 to 3.15 ms�2, as
indicated by the arrows. For comparison, dashed lines represent limits computed with a fixed set of friction coefficients (ls = 1,
ld = 0.5, ld1 = 0.4, ld2 = 0.3) used in Figure 10.

Table 2. Fitting coefficients obtained by applying equation (5) to the measured friction coefficients. These coefficients characterise
the second-order polynomial curves used to approximate the measured friction coefficients.

x0 x1 x2 x12 x11 x22

ls 1.623 �0.028 �0.112 �0.001 0.003 �0.002
ld1 1.134 �0.190 �0.243 0.068 �0.008 �0.007
ld 1.324 �0.186 �0.193 0.032 0.014 0.011
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These include the role of the vibrational response of the
instrument, the transverse and torsional string damping,
characteristic impedance, and inharmonicity. The current
experimental setup does not allow for measurement of tor-
sional behaviour. Future work could focus on incorporating
this information in further investigations, as well as account
for the ability of musicians to modulate bow force and
velocity during transients.
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